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Dense and Sparse Matrix Operations on

the Cell Processor

Abstract

The slowing pace of commodity microprocessor performance improvements
combined with ever-increasing chip power demands has become of utmost con-
cern to computational scientists. Therefore, the high performance computing
community is examining alternative architectures that address the limitations
of modern superscalar designs. In this work, we examine STI’s forthcoming Cell
processor: a novel, low-power architecture that combines a PowerPC core with
eight independent SIMD processing units coupled with a software-controlled
memory to offer high FLOP/s/Watt. Since neither Cell hardware nor cycle-
accurate simulators are currently publicly available, we develop an analytic
framework to predict Cell performance on dense and sparse matrix operations,
using a variety of algorithmic approaches. Results demonstrate Cell’s potential
to deliver more than an order of magnitude better GFLOP/s per watt perfor-
mance, when compared with the Intel Itanium2 and Cray X1 processors.
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Abstract 
The slowing pace of commodity microprocessor 

performance improvements combined with ever-
increasing chip power demands has become of utmost 
concern to computational scientists.  Therefore, the high 
performance computing community is examining 
alternative architectures that address the limitations of 
modern superscalar designs.  In this work, we examine 
STI’s forthcoming Cell processor:  a novel, low-power 
architecture that combines a PowerPC core with 
eight independent SIMD processing units coupled with a 
software-controlled memory to offer high FLOP/s/Watt.  
Since neither Cell hardware nor cycle-accurate simulators 
are currently publicly available, we develop an analytic 
framework to predict Cell performance on dense and 
sparse matrix operations, using a variety of algorithmic 
approaches.   Results demonstrate Cell’s potential to 
deliver more than an order of magnitude better GFLOP/s 
per watt performance, when compared with the Intel 
Itanium2 and Cray X1 processors. 
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Introduction 
 Over the last five years, a plethora of alternatives 
have been suggested for cache-based architectures 
including scratchpad memories, paged on-chip memories, 
and three level memory architectures.  Such software 
controlled memories can potentially improve memory 
subsystem performance by supporting finely-controlled 
prefetching and more efficient cache-utilization policies 
that take advantage of application-level information.  
Intelligent prefetching and scheduling policies can 
significantly improve the utilization of off-chip bandwidth 
– addressing the increasing requirements for these limited 
resources as multi-core chip technology becomes more 
prevalent.   
 Scratchpad memories [15, 16, 17] segment the 
addressable memory space into a cacheable off-chip 
space, and an on-chip space.  The on-chip space is 
typically no larger than a few kilobytes.  For many 
applications, this can provide significant (50%) 

improvement in performance by avoiding cache misses.  
However, the typical benchmark is a small embedded 
suite and often can easily fit within the scratchpad. 
 An alternate approach is paged on-chip memory 
[13].  The contents of the larger off-chip memory are 
paged in and out of the on-chip memory much like how 
virtual memory pages are swapped in and out of physical 
memory to disk.  Thus control is the responsibility of the 
OS rather than the hardware or the program.  A cache can 
be placed between the on-chip memory and the processor 
for improved performance.  For some large scientific 
applications, performance can improve by 50%.  For 
others, like TPCC, performance can be severely inhibited.  
The highly efficient VIRAM [14] coupled paged on-chip 
memory with high performance vector processing to 
achieve very high performance.   
 Three level memories [11, 12] create a third 
(registers, on-chip, off-chip) address space for on-chip 
memory.  Placement of data into this address space is 
controlled by the program.  In addition to avoiding cache 
misses, it is possible to avoid TLB misses as well.  Often 
it is advantageous to utilize this memory as a buffer.  In 
addition to higher performance, this approach is far more 
scalable.   

Until recently, few of these architectural 
concepts made it into mainstream processor designs, but 
the increasingly stringent power/performance 
requirements for embedded systems have resulted in a 
number of recent implementations that have adopted these 
concepts. Chips like the Sony Emotion Engine [8, 9, 10] 
and Intel’s MXP5800 both saw high performance at low 
power by adopting the three level memory architecture.  
More recently, the STI Cell processor has adopted a 
similar approach.  

This paper studies the applicability of the STI 
Cell processor to the most common of scientific kernels – 
dense matrix multiplication and sparse matrix vector 
multiplication.  Cell is a high-performance mainstream 
implementation of software-controlled memory in 
conjunction with considerable floating point resources 
that are required for demanding numerical algorithms. 
The current implementation of Cell offers higher 
performance single-precision arithmetic, which is widely 
considered insufficient for the majority of scientific 



applications.  However, we adopted Cell as a testbed 
architecture with the understanding that future variants for 
scientific computing will eventually include a fully 
pipelined double precision floating point unit and support 
for large virtual pages.  This paper explores the 
complexity of mapping scientific algorithms to this chip 
architecture and uses simulation methods and analytic 
models to predict the potential performance of dense and 
sparse matrix arithmetic algorithms on Cell.  

We start with an overview of the Cell processor 
architecture.  This is followed by a discussion of viable 
programming models.  In the next section, the 
performance prediction methodology and simulation 
methods are introduced.  Finally, we describe various 
methods for mapping dense and sparse matrix arithmetic 
to the Cell processor and predict their performance.  The 
paper concludes with a glimpse into future explorations. 

 
1. Cell Background 
 Cell [1, 2] was designed by a partnership of 
Sony, Toshiba, and IBM (STI) to be the heart of Sony’s 
forthcoming PlayStation 3 gaming system.  Cell takes a 
radical departure from conventional multiprocessor or 
multi-core architectures.  Instead of using identical 
cooperating processors, it uses a conventional high 
performance PowerPC core that controls eight simple 
SIMD cores, or SPE’s.  An overview of Cell is provided 
in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 
Cell Processor - Eight SPE’s, one PowerPC core, one memory 
controller, and two I/O controllers are connected via four rings.  Each 
ring is 128b wide and runs at half the core frequency.  Each SPE has its 
own local memory from which it runs programs. 

 
 

Unlike a typical coprocessor, each SPE has its 
own local memory from which it fetches code and reads 
and writes data.  The PowerPC core, in addition to virtual 
to physical address translation, is responsible for the 
management of the contents of each SPE’s 256KB of 
non-cache coherent local store.  Thus to load and run a 
program on an SPE, the PowerPC core initiates the 
DMA’s of SPE program and data from DRAM to the 
local store. Once the DMA’s complete, the PowerPC core 
starts the SPE.  For predictable data access patterns the 
local store approach is highly advantageous as it can be 
very efficiently utilized through explicit software-
controlled scheduling. Improved bandwidth utilization 

through deep pipelining of memory requests, requires less 
power, and has a faster access time than a large cache due 
in part to its lower complexity.  If however, the data 
access pattern lacks predictability, then the advantages of 
software managed memory are lost.   

Access to external memory is handled via a 
25.6GB/s XDR memory controller.  The PowerPC core, 
the eight SPE’s, the DRAM controller, and I/O controllers 
are all connected via 4 data rings, collectively known as 
the EIB.  The ring interface within each unit allows 8 
bytes/cycle to be read or written.  Simultaneous transfers 
on the same ring are possible.  All transfers are 
orchestrated by the PowerPC core. 

Each SPE includes four single precision 6-cycle 
pipelined FMA datapaths and one double precision half-
pumped 9-cycle pipelined FMA datapath [20].  As more 
information becomes publicly available, these may need 
to be refined as sources are terse.  Thus for 
computationally intense algorithms like GEMM, we 
expect single precision implementations to run near peak 
whereas double precision would drop to approximately 
one tenth the peak single-precision flop rate according to 
IBM’s design specifications [21].  Similarly, for 
bandwidth intensive applications – SpMV, we expect 
single precision to be between 50% and four times as fast 
depending on density and uniformity. 
 
2. Programming Models 
 Although the presence of eight independent 
processing elements offers huge benefits for peak 
performance, it presents a very challenging programming 
model. In this section, we explore some of the options 
available for mapping scientific algorithms onto this 
complex new architectural model. 

The data-parallel programming model is very 
common in the sciences and offers the simplest and most 
direct method of decomposing the problem.  The 
programming model is very similar to loop-level 
parallelization afforded by OpenMP or the vector-like 
multistreaming on the Cray X1 and the Hitachi SR-8000.  
Although this decomposition offers the simplest 
programming model, the restrictions on program structure 
and the fine-grained synchronization mean that it may not 
be the fastest or the most efficient approach. 

If we adopt a more loosely coupled model, the 
same methods that are applied to partitioning problems 
for distributed memory machines can be applied to this 
processor as if it were a ”cluster on chip.” The DMA 
engines on the SPE’s can be used to mimic a message-
passing interface to coordinate action on the SPE’s. 
However, for some categories of algorithms, this model 
can become significantly more complicated than a data-
parallel approach. 

A pipelined execution model was also 
envisioned by the Cell designers as a way to support 
streaming algorithms such as video codecs by partitioning 
stages of the process among the SPEs.  However, we do 
not consider this programming model in this paper 
because early analysis indicated it did not present 
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significant benefits in easer of programming or 
performance over the other programming models. 
 In each model, it is the responsibility of the 
PowerPC core to manage the flow of data in, out, and 
between the SPE’s.  This management is very 
computationally light.  Thus the PowerPC core, and most 
likely its L2 cache will be available for system functions 
without undermining computational performance or 
consuming much power.   
 Each SPE is capable of simultaneously servicing 
DMA’s and executing code.  Thus instead of loading data, 
computing on it, then returning the results before moving 
on to the next block – something analogous to bulk 
synchronous, the SPE’s should load data for the next 
operation, store data for the previous operation, and 
compute the current operation simultaneously.  This of 
course necessitates double buffering inputs and outputs, 
and will incur a startup and finish overhead penalty like 
any pipelining approach.  Nevertheless, in a data parallel 
approach, it should allow high utilization of either 
memory bandwidth or computational assets.   
 
3. Simulation Methodology 

In this paper, performance estimation is broken 
into two steps commensurate with the two phase double 
buffered computational model.  This provides a high level 
understanding of the performance limitations of the Cell 
processor on various algorithms.  Once we gain access to 
a cycle accurate simulator, we will verify our results and 
gain understanding of the processor features that limit 
performance.  

In the first step, pencil and paper estimations 
were performed for operations such as gather, SAXPY, 
dot product, and register blocked matrix multiply.  The 
resulting relations were quantified into models that took 
into account the SIMD nature of the SPE’s – i.e. 4 
FLOPs/cycle vs. 1 FLOP/cycle at four times the 
frequency.   

In the second step, we construct a model that 
accounts for the time required to load, via DMA, various 
objects, such as vectors, matrix cache blocks, or a stream 
of nonzeros, into the local store of an SPE.  The model 
must accurately reflect the constraints imposed by 
resource conflicts.  For instance, a sequence of DMA’s 
issued to multiple SPE’s must be serialized, as there is 
only a single DRAM controller.  The model also 
presumes a fixed DMA initiation latency of 1000 cycles 
based on existing design documents available regarding 
the Cell implementation.  The model also presumes a 
broadcast mechanism that is similar to classic token ring 
network implementations where tokens are dispatched 
from the memory controller, travel along the ring as their 
data is copied by each SPE they pass, and are 
automatically removed once they have looped back to the 
memory controller.   

The width of the SIMD units, the number of 
SPE’s, and the local store size and bandwidth are encoded 
directly into the model as constants.  External control is 
provided for parameters such as: the time for a SIMD 

reduction, the steady state time (per element) for a gather, 
a dot product or a SAXPY, the time to perform an inter 
SPE vector reduction, and the DMA initiation latency.   

Our simulation framework is essentially a 
memory trace simulator – the difference being the 
complexity of the concurrent memory and computation 
operations that it must simulate.  Instead of explicitly 
simulating computation using a cycle-accurate model of 
the functional units, we simulate the flow of data through 
the machine, and annotate the flow with execution time.  
The execution unit bandwidths and pipeline latencies are 
modeled as part of the data flow simulation.  Therefore, 
our simulation is more sophisticated than a typical 
memory-trace simulator; however, it does not actually 
perform the computation.  Additionally, instead of storing 
the matrix in a particular storage format and writing a 
program for each format, we store the key parameters for 
the matrix, and the nonzeros of the sparse matrix in an 
internal format, and write a performance annotator for 
each simulated storage format.  This facilitated our work 
and allowed for detailed understanding of various 
characteristics of the sparse matrices.   

Each algorithm was broken into a number of 
phases in which communication for the current objects 
and computation for the previous objects can take place 
simultaneously.  Of course, for each phase, it was 
necessary to convert cycles into actual time and FLOP 
rates.  For simplicity we chose to model a 3.2GHz, 8 SPE 
version of Cell with 25.6GB/s of memory bandwidth 
which is likely to be used in the first release of the Sony 
PlayStation 3 [19].  This ensured that both the EIB and 
DRAM controller could deliver two single precision 
words per cycle.  The maximum flop rate of such a 
machine would be 204.8GFLOP/s, with a computational 
intensity of 32 FLOPs/word.  It is unlikely that any 
version of Cell would have less memory bandwidth or run 
at a lower frequency.   

For comparison, we use Cray’s X1 MSP and 
Intel’s Itanium2.  The key characteristics of the 
processors are detailed in Table 1. 

 
 CELL X1(MSP) Itanium2  
 SPE Chip   

Architecture SIMD multi-core multi-chip 
Vector 

VLIW 

Frequency 3.2GHz 3.2GHz 800MHz 900MHz 
DRAM BW - 25.6GB/s 34GB/s 6.4GB/s 

GFLOP/s (single) 25.6 204.8 25.6 3.6 
GFLOP/s (double) 2.6 20.5 12.8 3.6 

Local Store 256KB  2MB - - 
L2 Cache - 512KB 2MB 256KB 
L3 Cache - - - 1.5MB 

Power 3W [1] ~30W 100W 130W 

 
Table 1 

Summary of architectural features of IBM’s Cell [21], the Cray X1 
MSP, and Intel’s Itanium2 including single and double precision peak 
performance.  A local store is not part of a cache hierarchy.  Total Cell 
power is based on the active SPE’s/idle PowerPC programming model. 

 
 
 



4. Dense Matrix Matrix Multiplication 
The first benchmark run, SGEMM, is a single 

precision dense matrix matrix multiply.  With its 
extremely high computational intensity, one should 
expect Cell to achieve a high percentage of peak flop rate.   

Two storage formats were explored.  The default 
is a column major format for all three matrices.  The 
second format, block data layout, or BDL, organizes 
matrix sub-blocks into contiguous blocks of memory [7].  
This can be particularly advantageous as it not only 
minimizes the number of DMA’s required, but also 
minimizes the number of pages touched when loading a 
sub-block.  Although a matrix might not be stored in 
BDL, it can quickly be converted on the fly.  Figure 2 
shows a matrix stored in the two formats.   

 
 
 
 
 
 
 
 
 
 
 
 
 

4.1 Algorithm Considerations 
Each matrix was broken into square “cache” 

blocks.  Technically they aren’t cache blocks as the SPE’s 
have no caches, but for clarity we will continue to use the 
terminology.  A column layout will require a number of 
short (cache block dimension) DMA’s equal to the 
dimension of the cache block – e.g. 64 DMA’s of length 
64.  BDL will require a single DMA of length 16KB.  The 
assumed 1000 cycles of DMA latency can result in poor 
memory bandwidth usage for small cache blocks.   

The local store, being only 256KB, can’t store 
more than about 56K words of data because the program 
and stack must also fit in the local store.  Cache blocks, if 
double buffered, require 6*n2 words of local store (one 
cache block from each matrix).  Thus it is impossible, 
with the current version of Cell, to utilize square cache 
blocks larger than 96x96.  Additionally, in column layout, 
there is additional pressure on the maximum cache block 
size for large matrices as each column within a cache 
block will be on a different page.  Upward pressure is 
derived from the computational intensity of matrix 
multiplication and the FLOPs to word ratio of the 
processor.  In the middle, there is a cache block size 
which delivers peak performance.   

The loop order in the column major storage 
format was chosen to minimize the average number of 
pages touched per phase.  In BDL, as TLB misses are not 
nearly the problem, the loop order was chosen to 
minimize memory bandwidth.   

A data parallel approach was chosen to 
disseminate work between the SPE’s.  Thus SPE cache 

blocks of size n x n are aggregated into Cell cache blocks 
of size 8n x n.   

An alternate approach considered, although not 
presented here would be to adapt Cannon’s algorithm [6] 
for parallel machines to a parallel machine on-chip.  
Although this could reduce the DRAM bandwidth 
requirements by transferring blocks via the EIB, for a 
column major layout, it could significantly increase the 
number of pages touched.  Simulation based analysis will 
have to wait until a detailed model of the PowerPC TLB 
is available.   

For small matrix sizes, it is most likely 
advantageous to choose a model that minimizes the 
number of DMA’s.  For example, broadcast both 
matrices, in their entirety, to all SPE’s.   

 
4.2 SGEMM Results 

Figure 3 shows SGEMM performance for 
various matrix dimensions, cache block sizes, and storage 
formats.  Clearly shown is that 32x32 cache blocks are far 
too small to achieve a computational intensity high 
enough to fully utilize the processor.  The choice of loop 
order and the resulting increase in memory traffic 
prevents column major 64x64 blocks from achieving 90% 
of peak.  One doesn’t expect matrix multiplication to be 
memory bound, but for small cache blocks, it can be.  
Only 96x96 blocks provide enough computational 
intensity to overcome the additional block loads and 
stores.   
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Figure 3 
SGEMM on Cell.  Even with the minimum overhead of BDL, the lack of 
computational intensity prevents 32x32 cache blocks from attaining 60% 
of peak.  The inefficiency of column major layout prevents it from 
reaching peak performance without very large cache blocks.   
 
 

It should be noted that if the DMA latency were 
100 cycles, then the 64x64 column major performance 
would reach parity with BDL.  This is certainly a 
motivation for user controlled DMA.  Alternatively, if 
128x64 blocks were used, then performance would also 
rival BDL.     

Higher frequencies (e.g. 4GHz) will not help if 
peak performance is not being achieved due to high 
memory traffic, DMA latency, or TLB misses.  Similarly, 
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N 

N+1 1 

n 

n+1 

Figure 2 
Left: column major layout.    Right: BDL.  Within each n x n block, 
values are stored in column major order 



higher bandwidth will go unused if the configuration is 
computationally bound.   

Larger local stores, and thus larger cache blocks 
are not necessarily helpful in the column major layout as 
that would necessitate more pages being touched, and the 
likelihood of far more TLB misses.  This is not an 
obstacle in the BDL approach.   
 
4.3 DGEMM Results 

A similar set of strategies and simulations were 
performed for DGEMM.  Cache blocks are now limited to 
be no larger than 64x64 – finite local store.  This is not 
the performance limitation it was in SGEMM.  Although 
the time to load a double precision 64x64 cache block is 
twice that of a single precision version, the time required 
to compute on a 64x64 double precision cache block is 
about ten times (no more fully pipelined SIMD) as long as 
the single precision counterpart.  Thus it is far easier for 
double precision to reach its peak performance.  Of course 
peak double precision performance is one tenth of single 
precision – a mere 20 GFLOP/s.   

 
4.4 Comparison 

At 3.2GHz, each SPE requires about 3W [1].  
Thus with a nearly idle PPC and L2, Cell achieves over 
200GFLOP/s for around 30W – nearly 7GFLOP/s/W.  
Clearly Cell is highly efficient at large matrix 
multiplication 

DGEMM and SGEMM were also run on Cray’s 
X1, and a 900MHz Itanium2.  The results are detailed in 
the Table 2.   

 
 Double (GFLOP/s) Single (GFLOP/s) 
 Cell X1 Itanium2 Cell X1 Itanium2 

Peak 20.4 11.2 3.5 204.7 16.4 3.6 

 
Table 2 

Peak GEMM performance (in GFLOP/s) for large square matrices on 
Cell, X1, and the Itanium2.  With about ¼ the power, Cell is nearly 6 
times faster in double precision and more than 50 times faster in single 
precision than the Itanium2. 

 
 

The 900MHz Itanium2 is capable of running the 
Intel MKL DGEMM at 3.5GFLOP/s.  Although this 
number is an impressively high percentage of peak, the 
architecture is not power efficient, and scaling to 
multiprocessors exacerbates the problem.  For example a 
4 processor 1.5GHz Itanium2 system will consume well 
over 500W, and yet only deliver about 22GFLOP/s.  
Contrast this with a single Cell processor which consumes 
less than 1/15th the power and provides about the same 
performance in double precision – by no means Cell’s 
forte.  The Itanium2 does not have SIMD support.  Thus, 
in single precision, Cell is more than 100 times more 
power efficient.  Similarly, in double precision, Cell is 
about twice as fast as the X1, and at least 6 times more 
power efficient.  In single precision, Cell is nearly 40 
times more power efficient. 

The primary focus for matrix multiplication on 
Cell is the choice of data storage to minimize the number 
of DMA’s and TLB misses while maximizing 
computational intensity.  Secondary is the choice of 
programming model.  The decoupling of main memory 
data access from the computational kernel guarantees 
constant memory access latency since there will be no 
cache misses, and all TLB accesses are resolved in the 
communication phase.   

Matrix multiplication is perhaps the best 
benchmark to demonstrate Cell’s computational 
capabilities as it achieves high performance by buffering 
large cache blocks on chip before computing on them 
 
 
5. Sparse Matrix Vector Multiply 
 Naïvely, SpMV would seem to be the worst 
application to run on Cell since the SPE’s have neither 
caches nor gather/scatter support.  Furthermore, SpMV 
has O(1) computational intensity.  However, these are 
perhaps less important than the low functional units and 
local store latency (<2ns), the task parallelism afforded by 
the SPE’s, the eight independent load store units, and 
ability to stream nonzeros via DMA’s.   
 Three storage formats were examined:  
compressed sparse row (CSR), compressed sparse column 
(CSC), and blocked compressed sparse row (BCSR).  
CSR collects the nonzeros from one row at a time and 
appends three arrays:  the values, the corresponding 
columns for the values, and the locations in the first two 
arrays where the row starts.  BCSR behaves in much the 
same way as CSR.  The difference is that CSR operates 
on what are in effect 1x1 blocks, and BCSR operates on   
r x c blocks.  Thus the values array is grouped into r*c 
segments which include zeros.  CSC is organized around 
columns rather than rows. 
 
 
 
 
 
 
 
 
 

Figure 4 
A 4x4 matrix with columns numbered from 0 to 3 is shown stored in 1x1 
BCSR (CSR), and 2x2 BCSR.  CSC would look similar to CSR except 
that it is organized along columns rather than rows. 
 
 

All three storage formats provide regular access 
patterns to the nonzeros.  However, CSR and CSC force a 
very irregular access pattern to the source and destination 
vectors respectively.  For SIMD sized granularities BCSR 
provides regular access within a block, but requires 
irregular accesses outside.  BCSR also has the pitfall that 
zeros are both loaded and computed on.  Only the 2x2 
BCSR data will be shown as the 4x4 blocks showed poor 
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performance.  Figure 4 provides an example matrix and 
the corresponding data structures used in CSR and BCSR.   
 A CSR/BCSR pseudocode overview can be 
illustrative.  In CSR, Y[r], values[i], and X[columns[i]] 
are all scalars.  In BCSR, Y[r], and X[columns[i]] now 
are segments of the vectors, and the values[i] are blocks.  
The X[columns[i]] statement is referred to as a gather 
operation.  CSR performs a dot product for each row.   
 
 for all rows r 
   for all elements i in row r 
     Y[r] = Y[r] + values[i]*X[columns[i]] 
 
For completeness, the following is pseudo code for CSC. 
 
 for all columns c 
   for all elements i in column c 
     Y[rows[i]] = Y[rows[i]] + values[i]*X[c] 
 
CSC performs a SAXPY for each column.  The write to Y 
is a scatter operation.  Thus there is a dependency from 
the gather to the scatter, and there is a potential 
dependency from the scatter for one column to the gather 
on the next.   
 
5.1 Algorithm Considerations 
 As there are no gather/scatter DMA operations in 
Cell, cache blocking must be utilized.  Once again, to be 
clear, the term cache blocking, when applied to Cell, 
implies that blocks of data, in this case the vectors, will be 
loaded in the SPE’s local stores.  For simplicity all 
benchmarks were run using square cache blocks.  The 
data structure required to store the entire matrix is a 2D 
array of cache blocks.  Each cache block stores its 
nonzeros and row pointers as if it were an entire matrix.  
This results in more row pointers being loaded and 
substantial overhead.  Cache blocks were not double 
buffered as this would require more local store, or more 
precisely smaller cache blocks.  This is an area for future 
exploration.    Collectively the cache blocks were chosen 
to be no larger than ~36K words (half that in double 
precision).   
 It should be noted that since the local store is not 
a write back cache, it is possible to overwrite its contents 
without fear of either consuming DRAM bandwidth or 
corrupting the actual arrays.  The objects in the local store 
are more appropriately copies of the objects in DRAM.  
In CSR it is possible to decouple the gather operations 
from the dot products because there is only a read after 
read hazard from the gather operation on one row to the 
gather on the next row.   The contents of the index array, 
or more appropriately, the copy of the index array, can be 
overwritten with their corresponding source vector values.  
This decoupled gather operation can be fully unrolled and 
software pipelined, thereby being performed in close to 
1.5 cycles/element.  If the gather remained coupled to the 
dot product, then without unrolling, the local store latency 
would be exposed and performance may suffer.   

The gather/scatter operations in CSC cannot be 
decoupled from the SAXPY’s since there is a potential 
read after write dependency from the scatter of one 
column to the gather in the next column.  This decoupled 
approach provides CSR with a significant advantage over 
CSC.  As a result, we expect that CSC will never 
outperform CSR; at best it will provide the same 
performance (memory bound).  Thus CSC results will not 
be presented in this paper. 
 It should be noted that it is possible to unroll the 
longer dot products or SAXPY’s.  This will provide 
higher performance only if SpMV is not memory bound.  
Beyond SIMD, this optimization was not explored in this 
paper. 
 As the nonzeros are stored in arrays, it is easy to 
stream them in via DMA.   Here it is essential to double 
buffer to ensure that the SPE’s always have work to do.  
Buffering 16KB was sufficient.  Thus for CSR, this is 2K 
values and 2K indices.  For BCSR, this is at about 1K 
tiles.  For each phase, a load of nonzeros and indices, 
there is the omnipresent 1000 cycle DMA latency.   
 The biggest question was how to partition work 
between SPE’s.  By allowing all SPE’s work on the same 
cache block, it is possible to broadcast the cache blocked 
source vector and row pointers to minimize memory 
traffic.  One approach to divide work within a cache block 
would be to more or less evenly divide the nonzeros 
between the SPE’s.  Of course this not only necessitates 
each SPE have a private copy of the destination vector, 
but that an inter-SPE reduction be performed at the end of 
the blocked row.  We call this approach PrivateY.  The 
alternate method, which we call PartitionedY, partitions 
the destination vector evenly among the SPE’s.  By 
reducing the size of the destination vector within each 
SPE, one can double the size of the source vector 
“cached” within the local store.  However there is no 
longer any guarantee that the SPE’s computations will 
remain balanced.  The most loaded SPE determines the 
execution time for the entire cache block.  Thus for 
balanced cache blocks, the PartitionedY usually wins out.  
However for unbalanced cache blocks, not an uncommon 
occurrence, the PrivateY approach wins.   

The algorithm proceeds through the matrix one 
blocked row at a time. The height of the blocked row is 
equal to the cache block height.  Thus it is possible to 
save the write to the destination vector, and a possible 
reduction until the end of the blocked row.  The blocked 
row is divided into cache blocks of equal height and 
width.  For each cache block the source vector and row 
pointers are loaded.  Once that is completed, blocks of 
nonzeros are streamed to the SPE’s and partitioned 
according to the partitioning strategy.  Each block is 
processed once it has been received, and at the same time 
as the next block is being sent.  Thus for each cache 
block‘s execution, there is a startup penalty (to transfer 
the first block of nonzeros) where no processing takes 
place, and a finish penalty (to operate on the last block of 
nonzeros), where no data transfer is taking place.  Usually 
these overheads, as well as the source vector load time, 



destination vector reduction and destination store time, 
are small compared to the total time.   

It should be noted that there could be some 
benefit by writing a kernel optimized for a symmetric 
matrix.  The nonzero memory traffic does not increase, 
but the number of operations can double.  One must, 
however, cache block two blocks at the same time.  Thus 
the symmetric kernel divides memory allocated for cache 
blocking the vectors evenly among the two sub-matrices, 
and for each row in the lower triangle, performs a dot 
product and a SAXPY.   

 
5.2 Evaluation Matrices 
 In order to evaluate SpMV performance, six 
synthetic matrices, four unsymmetric matrices from the 
SPARSITY matrix suite [3, 5], and six symmetric 
matrices, also from the SPARSITY suite were run.  Their 
characteristics are summarized in the Table 3.    
 
 

 Name N NNZ Comments 
- 7pt_32 32K 227K 3D 7pt stencil on a 323 grid 
- Random 32K 512K Totally random matrix 

- 
Random 

(symmetric) 
32K 256K 

Random Symmetric matrix – 
Total of 512K nonzeros 

- 7pt_64 256K 1.8M 3D 7pt stencil on a 643 grid 
- Random 256K 4M Totally random matrix 

- 
Random 

(symmetric) 
256K 2M 

Random Symmetric matrix – 
Total of 4M nonzeros 

15 Vavasis 40K 1.6M 2D PDE Problem 
17 FEM 22K 1M Fluid Mechanics Problem 
18 Memory 17K 125K Memory Circuit from Motorola 

36 CFD 75K 325K 
Navier-Stokes, viscous flow, fully 
coupled 

06 FEM Crystal 14K 490K 
FEM Crystal free vibration stiffness 
matrix 

09 3D Pressure 45K 1.6M 3D pressure Tube 
25 Portfolio 74K 335K Financial Portfolio - 512 Scenarios 
27 NASA 36K 180K PWT NASA Matrix with diagonal 
28 Vibroacoustic 12K 177K Flexible box, structure only 
40 Linear Prog. 31K 1M AAT 

 
Table 3 – Benchmark matrices used for SpMV   

Number refers to the matrix number in the SPARSITY suite used by the 
Bebop group for benchmarking 

 
 
5.3 Single Precision SpMV Results 

The results of single precision performance 
estimation are detailed in Figures 5 and 6.  Surprisingly, 
given Cell’s SpMV limitations, every matrix achieves 
impressive multi-GFLOP performance for nearly every 
configuration.  Unfortunately, many of the matrices are so 
small that they fully utilize only a fraction of a cache 
block.   

It was clear that the performance is almost 
entirely determined by the memory bandwidth.  It is not 
possible, for many matrices, to achieve the 6.4GFLOP/s 
CSR unsymmetric peak performance since there can be 
substantial cache blocking and DMA overhead.  As one 
might expect, large matrices with high densities (to 
amortize the cache blocking overhead) show closer to 

peak performance.  Similarly, larger cache blocks yield 
higher performance for large matrices.   

Unlike the synthetic matrices, the library 
matrices, which contain dense sub-blocks, can exploit 
BCSR without wasting memory bandwidth on zeros.  As 
memory traffic is key, storing BCSR blocks in a 
compressed format (the zeros are neither stored nor 
loaded) could allow significantly higher performance if 
there is sufficient support within the ISA to either 
decompress these blocks on the fly, or compute on 
compressed blocks.  Since detailed knowledge of the 
permute datapath is currently unavailable, this exploration 
will have to wait. 
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Figure 5 
Top: Single precision SpMV using synthetic matrices – clear benefits 
from density and uniformity.  Bottom: using SPARSITY unsymmetric 
matrices – PrivateY shows superior performance due to unbalance.   
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Figure 6 

Single precision SpMV using SPARSITY symmetric matrices – 
Significant performance boost from minimization of nonzero traffic.  
Each of the cache blocks is half as big.  Imbalance in PartitionedY 
strategy can generate serious performance degradation.   
 
 



 The choice of a partitioning strategy is pretty 
clear.  PrivateY is almost invariably the better approach.  
Most likely, the matrices are sufficiently unbalanced that 
the uniform partitioning of the nonzeros coupled with a 
reduction requires less time.   

Since the local store size is fixed, cache blocks in 
the symmetric kernels are in effect half the size of the 
space allocated.  The symmetric kernel, when in the 
PartitionedY configuration, is extremely unbalanced for 
cache blocks along the diagonal.  Thus, for small 
matrices, imbalance between SPE’s, even if the matrix is 
uniform, can severely impair the performance.  Figure 7, 
which assumes a Cell configuration with 4 SPE’s, might 
help visualize the inherent flaw in the symmetric kernel as 
implemented.  In fact, symmetric optimizations show only 
about 50% performance improvement (determined by 
running the symmetric matrices on the unsymmetric 
kernel).   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The TLB plays a much smaller role in this 

algorithm than in GEMM.  Accesses are unit stride, and 
there is rarely more than 16 DMA’s per phase.  Each of 
these DMA’s is of order a page size.   

Once again DMA latency plays a relatively small 
role in this algorithm.  In fact, reducing the DMA latency 
by a factor of ten results in only a 10% increase in 
performance.  This is actually a good result.  It means 
than the memory bandwidth is highly utilized.  The 
majority of bus cycles are used for transferring data rather 
than stalls. 
 On the whole, clock frequency also plays a small 
part in the overall performance.  Increasing the clock 
frequency by a factor of 2 (to 6.4GHz) provides less than 
a 5% increase in performance on the SPARSITY 
unsymmetric matrix suite.  Similarly, cutting the 
frequency in half (to 1.6GHz) results in less than a 10% 
decrease in performance.  One might wonder if the dot 
product times are too aggressive.  Cutting the frequency 
in half could just as easily be interpreted as a doubling in 
dot product time – even if we were off by a factor of two, 
its only a 10% difference in overall performance.  Simply 
put, for the common case, more time is used in 
transferring nonzeros and the vectors rather than 
computing on them.  This means that solely doubling 

bandwidth will not necessarily double performance.  In 
fact, in order to double performance, doubling bandwidth 
must be coupled with an amortization of DMA latency.  
Similarly, an increase in bandwidth efficiency – i.e. a 
reduction in meta data, is only useful if it is accompanied 
by an increase in parallelism. 
 
5.4 Double Precision SpMV Results 
 Preliminary analysis indicates that single 
precision SpMV is nearly twice as fast as double 
precision on the Cell architecture.  Initially this can be 
surprising since memory traffic should only increase by 
50%.  A single precision nonzero requires 8 bytes (a 32b 
value and a 32b index).  In double precision, a nonzero 
requires 12 bytes – the index remains 32 bits.  The biggest 
problem is the reduction in the number of values that are 
cache blocked.  Twice as many cache blocks within a 
blocked row must be loaded and twice as many blocked 
rows are present.  For example, consider 16K x 16K 
single precision cache blocks on a 128K x 128K matrix.  
The 512KB source vector must be loaded 8 times.  In 
double precision, the cache blocks are only 8K x 8K.  As 
a result, the 1MB source vector must be loaded 16 times.  
Thus far more memory bandwidth can be consumed on 
cache blocking.   
 
5.5 Comparison 

Results are compared with the SPARSITY suite, 
a highly tuned sparse matrix numerical library [3].  The 
previously documented optimum performance on a 
900MHz Itanium2 processor, in addition to Cell’s 
estimated performance behavior, is detailed in Tables 4 
and 5.   

 
 Double (GFLOP/s) Single (GFLOP/s) 

Matrix Cell Itanium2 Cell Itanium2 
Vavasis 3.12 0.51 5.95 0.52 
FEM 3.40 0.54 5.09 0.63 
CFD 2.02 0.25 2.48 0.15 

Average 2.85 0.43 4.51 0.43 
 

Table 4 
Peak SpMV performance (in GFLOP/s) of Cell and Itanium2 for both 
double and single precision on the SPARSITY unsymmetric matrix 
suite.  Even in double precision, Cell is about seven times faster (with 
only four times the memory bandwidth). 

 
 

 Double (GFLOP/s) Single (GFLOP/s) 
Matrix Cell Itanium2 Cell Itanium2 

FEM Crystal 6.23 0.74 11.98 1.21 
3D Pressure 5.97 0.72 11.02 1.24 

Protfolio 1.63 0.23 2.77 0.19 
NASA 1.76 0.27 2.91 0.22 

Vibroacoustic 3.28 0.31 6.78 0.41 
Linear Prog. 4.81 0.33 8.52 0.66 

Average 3.95 0.43 7.33 0.66 
 

Table 5 
Peak SpMV performance (in GFLOP/s) of Cell and Itanium2 for both 
double and single precision on the SPARSITY symmetric matrix suite.  
Cell is about 10 times faster (with only four times the memory 
bandwidth).   

Figure 7 
Left: small matrix with single cache block.  If the matrix is uniform, 
and the PartitionedY strategy is used, then SPE3 performs 7 times as 
much work as SPE0.    Right: larger matrix.  Overall, SPE3 now 
performs a little over twice the work of SPE0.  As on-diagonal cache 
blocks become the minority (large matrices), their inherent imbalance 
ceases to adversely affect performance. 
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With the Itanium2’s 6.4GB/s bus, one would 

expect that a memory bound application like SpMV 
would perform only four times better on Cell, whose 
DRAM bandwidth is 25.6GB/s.  Nevertheless, on 
average, Cell is more than seven times faster.  In single 
precision, Cell is more than 10 times faster.  Actually this 
is not that surprising.  In order to achieve peak 
performance, Itanium2 must rely on BCSR and thus waste 
memory bandwidth loading zeros.  For example, in matrix 
#17, Cell uses more than 50% of its bandwidth loading 
just the double precision nonzero values, while the 
Itanium2 utilizes only 33% of its bandwidth.  The rest of 
Itanium’s bandwidth is used for zeros and meta data.  
Cell’s cache blocking is far more efficient in single 
precision since cache blocks double in size in both 
dimensions.  It should be noted that where simulations on 
Cell involve a cold start to the local store, the Itanium2’s 
have the additional advantage of a warm cache. 

Cell’s use of on-chip memory as a buffer is 
advantageous in both power and area than a cache.  In 
fact, Cell is more than 20 times more power efficient than 
the Itanium2 on SpMV.   

Comparing results with the X1, even with the 
permutation optimization (CSRP), an X1 MSP achieves 
only about 1 GFLOP/s on a 7pt stencil [4].  Standard CSR 
achieves less than 0.01 GFLOP/s.  On a similar matrix, in 
double precision, Cell is able to achieve about 
1.77GFLOP/s.  Although the X1 has 50% more memory 
bandwidth, it is only a little better than half the 
performance of Cell.   

Although it is true that cell achieves a dismally 
low percentage of peak flop rate (less than 5%), it is using 
a high percentage of memory bandwidth.  For completion, 
a search of the entire BCSR space is required to find the 
true optimum performance levels. 

 
6. Conclusions 

The high performance computing community is 
exploring alternative architectural approaches to address 
the limitations of modern superscalar designs.  This work 
presents the first attempt to explore the behavior of 
scientific kernels on the forthcoming Cell processor’s 
novel architecture.  Since neither Cell hardware nor cycle-
accurate simulators are currently publicly available at this 
time, we develop an analytic framework to predict Cell 
performance on dense and sparse matrix operations, using 
a variety of algorithmic approaches.    Results, compared 
with the Intel Itanium2 and Cray X1 processors, indicate 
the tremendous potential of the Cell architecture, both in 
terms of raw performance and power advantages. 
 Analysis shows that Cell’s three level memory 
architecture, which completely decouples main memory 
load/store from computation, provides several advantages 
over mainstream cache-based architectures.  First, kernel 
performance can be extremely predictable as the average 
load time from local store is also the worst case.  Second, 
long block transfers can achieve a much higher 
percentage of memory bandwidth than individual loads in 

much the same way a prefetch engine, once engaged, can 
fully consume memory bandwidth.  Finally, for 
predictable memory access patterns, communication and 
computation can be effectively overlapped.  Increasing 
the size of the local store or reducing the DMA startup 
overhead on future Cell implementations may further 
enhance the scheduling efficiency in order to better 
overlap the communication and computation. 
 There are disadvantages to this architecture.  
Although GEMM is highly predictable, and inherently has 
a high computational intensity, SpMV, with its 
unpredictable access patterns and low computational 
intensity achieves a dismally low percentage of peak 
performance.  Even memory bandwidth can be wasted 
since SpMV is constrained to use cache blocking to 
remove the unpredictable accesses to the source vector.  
The ability, however, to perform a decoupled gather, to 
stream nonzeros, and Cell’s low functional unit latency, 
tends to hide this deficiency. 
 For dense matrix operations, it is essential to 
maximize computational intensity and thereby fully 
utilize the local store.  However, if not done properly, this 
can result in TLB misses adversely affecting performance.  
BDL data storage, either created on the fly or before hand, 
can ensure that TLB misses remain a small issue as on-
chip memories increase in size. 
 
7. Future Work 
 A key component missing in this work is cycle-
accurate simulation of the Cell architecture.  We expect to 
work on validating the models that we have been using to 
predict Cell performance using a suite of high level 
architectural simulators that are due to be released by 
IBM Research in late July.  We will report those results in 
this paper if the software release proceeds as scheduled.  
The simulation results will also be checked against runs 
on Cell-based workstations when they become available. 
 We are also actively expanding our study of the 
Cell architecture’s applicability to science to include 
stencil-based computations, FFT’s for spectral methods, 
and even pipelined mapping of large arithmetically 
intense loops. 
 Cell will not reach its true potential for scientific 
computing until an implementation that includes at least 
one (preferably two) fully pipelined double precision 
floating point unit becomes available.  Until then, studies 
of Cell may provide insights into enhancements that may 
prove useful for mainstream desktop processor 
implementations or even a variant of the Cell processor 
that includes other HPC-oriented features. 
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